Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Поленова Инда Роска и профессионального образования Должность: Генеральный директор «Колледж Волжского университета имени В.Н. Татищева» Дата подписания: 23.10.2023 19:22:36

Уникальный программный ключ:

2bc51b031f52f1ef87c6946d50ac9f5ab912348ab42251f7e55eb40acef68095

УТВЕРЖДЕНО

приказом генерального директора АНО СПО «Колледж ВУиТ» И.А. Поленовой от 29 апреля 2022 г. №45

Рабочая программа дисциплины

ОУД.9 ХИМИЯ

общеобразовательного цикла

программы подготовки специалистов среднего звена по специальности:

19.02.10 Технология продукции общественного питания

ОДОБРЕНА

Педагогическим Советом Протокол № 5 от «15» апреля 2022г.

Составитель: Мигунова Елена Григорьевна, заведующая отделением «Сервиса и информационных технологий» АНО СПО «Колледж ВУиТ».

Рабочая программа профессионального модуля разработана на основе федерального государственного образовательного стандарта среднего профессионального образования по специальности **19.02.10 Технология продукции общественного питания**, утвержденной приказом Министерства образования и науки РФ от «22» апреля 2014 г. № 384.

СОДЕРЖАНИЕ

1	ПАСПОРТ РАБОЧЕЙ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ	4
2	СТРУКТУРА И СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ	6
3	УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ	29
4	КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ	31

1. ПАСПОРТ ПРОГРАММЫ УЧЕБНОЙ ДИСЦИПЛИНЫ ОУД.9 ХИМИЯ

1.1. Область применения программы учебной дисциплины

Рабочая программа учебной дисциплины (далее программа УД) - является частью основной профессиональной образовательной программы АНО СПО «Колледж ВУиТ» по специальности СПО 19.02.10 Технология продукции общественного питания.

Рабочая программа составлена для очной формы обучения.

1.2. Место учебной дисциплины в структуре ППССЗ

Учебная дисциплина ОУД.9 Химия является дисциплиной общеобразовательного учебного цикла в соответствии с естественнонаучным профилем профессионального образования.

Учебная дисциплина ОУД.9 Химия относится к предметной области **естественные науки** ФГОС среднего общего образования из обязательных предметных областей.

Уровень освоения учебной дисциплины в соответствии с ФГОС среднего общего образования **базовый**.

Реализация содержания учебной дисциплины предполагает соблюдение принципа строгой преемственности по отношению к содержанию курса **Химии** на ступени основного общего образования.

В то же время учебная дисциплина ОУД.9 Химия для профессиональных образовательных организаций обладает самостоятельностью и цельностью.

Рабочая программа учебной дисциплины **ОУД.9 Химия** имеет межпредметную связь с общеобразовательными учебными дисциплинами и профессиональными дисциплинами.

Изучение учебной дисциплины **ОУД.9 Химия** завершается промежуточной аттестацией в форме дифференцированного зачета и экзамена в рамках освоения ППССЗ на базе основного общего образования.

1.3. Планируемые результаты освоения учебной дисциплины

Освоение содержания учебной дисциплины ОУД.9 Химия планирует достижение студентами следующих результатов:

• личностных:

- чувство гордости и уважения к истории и достижениям отечественной химической науки;
- химически грамотное поведение в профессиональной деятельности и в быту при обращении с химическими веществами, материалами и процессами;
- готовность к продолжению образования и повышения квалификации в избранной профессиональной деятельности и объективное осознание роли химических компетенций в этом;
- умение использовать достижения современной химической науки и химических технологий для повышения собственного интеллектуального развития в выбранной профессиональной деятельности;

• метапредметных:

- использование различных видов познавательной деятельности и основных интеллектуальных операций (постановки задачи, формулирования гипотез, анализа и синтеза, сравнения, обобщения, систематизации, выявления причинно-следственных связей, поиска аналогов, формулирования выводов) для решения поставленной задачи, применение основных методов познания (наблюдения, научного эксперимента) для изучения различных сторон химических объектов и процессов, с которыми возникает необходимость сталкиваться в профессиональной сфере;

- использование различных источников для получения химической информации, умение оценить ее достоверность для достижения хороших результатов в профессиональной сфере;

• предметных:

- сформированность представлений о месте химии в современной научной картине мира; понимание роли химии в формировании кругозора и функциональной грамотности человека для решения практических задач;
- владение основополагающими химическими понятиями, теориями, законами и закономерностями; уверенное пользование химической терминологией и символикой;
- владение основными методами научного познания, используемыми в химии: наблюдением, описанием, измерением, экспериментом; умение обрабатывать, объяснять результаты проведенных опытов и делать выводы; готовность и способность применять методы познания при решении практических задач;
- сформированность умения давать количественные оценки и производить расчеты по химическим формулам и уравнениям;
- владение правилами техники безопасности при использовании химических веществ;
- сформированность собственной позиции по отношению к химической информации, получаемой из разных источников.

Освоение содержания учебной дисциплины ОУД.9 Химия обеспечивает формирование и развитие универсальных учебных действий в контексте преемственности формирования общих компетенций.

Виды универсальных учебных действий	Общие компетенции
	(в соответствии с ФГОС СПО по
	специальности/профессии)
Личностные: обеспечивают ценностно-	ОК 1. Понимать сущность и социальную
смысловую ориентацию обучающихся и	значимость своей будущей профессии,
ориентацию в социальных ролях	проявлять к ней устойчивый интерес.
межличностных отношений.	ОК 3. Принимать решения в стандартных и
	нестандартных ситуациях и нести за них
	ответственность.
	ОК 7. Брать на себя ответственность за
	работу членов команды (подчиненных),
	результат выполнения заданий.
Регулятивные: целеполагание,	ОК 2. Организовывать собственную
планирование, прогнозирование, контроль	деятельность, выбирать типовые методы и
(коррекция), саморегуляция, оценка	способы выполнения профессиональных
(обеспечивают организацию	задач, оценивать их эффективность и
обучающимися своей учебной	качество.
деятельности).	ОК 8. Самостоятельно определять задачи
	профессионального и личностного
	развития, заниматься самообразованием,
	осознанно планировать повышение
	квалификации.
Познавательные: обеспечивают	ОК 4. Осуществлять поиск и
исследовательскую компетентность,	использование информации, необходимой
умение работать с информацией.	для эффективного выполнения
	профессиональных задач,
	профессионального и личностного
	развития.

	ОК 5. Использовать информационно-
	коммуникационные технологии в
	профессиональной деятельности.
	ОК 9. Ориентироваться в условиях частой
	смены технологий в профессиональной
	деятельности.
Коммуникативные: обеспечивают	ОК 6. Работать в коллективе и команде,
социальную компетентность и учет	эффективно общаться с коллегами,
позиции других людей, умение слушать и	руководством, потребителями.
вступать в диалог, участвовать в	
коллективном обсуждении проблем,	
взаимодействовать и сотрудничать со	
сверстниками и взрослыми.	

1.4. Количество часов на освоение программы учебной дисциплины

Максимальная учебная нагрузка обучающегося 237 часов, в том числе:

- обязательная аудиторная учебная нагрузка обучающегося, включая практические занятия **156** часов;
 - самостоятельная работа обучающегося 81 час.

В том числе часов вариативной части учебных циклов ППССЗ не предусмотрено.

2. СОДЕРЖАНИЕ УЧЕБНОЙ ДИСЦИПЛИНЫ И ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

2.1. Объем учебной дисциплины и виды учебной работы

Вид учебной работы	Объем часов
Максимальная учебная нагрузка (всего)	237
Обязательная аудиторная учебная нагрузка (всего)	156
в том числе:	
лабораторные занятия	78
практические занятия	-
контрольные работы	-
Самостоятельная работа обучающегося (всего)	81
Промежуточная аттестация в форме дифференцированного заче	ета и экзамена

Профильное изучение общеобразовательной учебной дисциплины **ОУД.9 Химия** осуществляется частичным перераспределением учебных часов и отбором дидактических единиц в зависимости от важности тем для специальности **19.02.10 Технология продукции общественного питания**.

2.2. Тематический план и содержание учебной дисциплины ОУД.9 Химия

Наименование	Содержание учебного материала, лабораторные и практические работы, самостоятельная	Объем	Уровень
разделов и тем	работа обучающихся	часов	освоения
	Раздел 1. Органическая химия		
Тема 1.1.	Научные методы познания веществ и химических явлений. Роль эксперимента и теории в	1	1
Введение	химии. Значение химии при освоении специальностей СПО естественно-научного профиля		
	профессионального образования.		
Тема 1.2.	Предмет органической химии. Понятие об органическом веществе и органической химии.	1	2
Предмет органической	Краткий очерк истории развития органической химии. Витализм и его крушение. Особенности		
химии. Теория строения	строения органических соединений. Круговорот углерода в природе.		
органических	Теория строения органических соединений А. М. Бутлерова. Предпосылки создания теории		
соединений.	строения. Основные положения теории строения А. М. Бутлерова. Химическое строение и свойства		
	органических веществ. Понятие об изомерии. Способы отображения строения молекулы (формулы,		
	модели). Значение теории А. М. Бутлерова для развития органической химии и химических прогнозов.		
	Строение атома углерода. Электронное облако и орбиталь, s- и p-орбитали. Электронные и		
	электронно-графические формулы атома углерода в основном и возбуденном состояниях. Ковалентная		
	химическая связь и ее классификация по способу перекрывания орбиталей. Понятие гибридизации.		
	Различные типы гибридизации и форма атомных орбиталей, взаимное отталкивание гибридных		
	орбиталей и их расположение в пространстве в соответствии с минимумом энергии. Геометрия молекул		
	веществ, образованных атомами углерода в различных состояниях гибридизации.		
	Классификация органических соединений . Классификация органических веществ в		
	зависимости от строения углеродной цепи. Понятие функциональной группы. Классификация		
	органических веществ по типу функциональной группы.		
	Основы номенклатуры органических веществ. Тривиальные названия. Рациональная		
	номенклатура как предшественница номенклатуры IUPAC. Номенклатура IUPAC: принципы		
	образования названий, старшинство функциональных групп, их обозначение в префиксах и суффиксах		
	названий органических веществ.		
	Типы химических связей в органических соединениях и способы их разрыва.		
	Классификация ковалентных связей по электроотрицательности связанных атомов, способу		
	перекрывания орбиталей, кратности, механизму образования. Связь природы химической связи с		
	типом кристаллической решетки вещества и его физическими свойствами. Разрыв химической связи		
	как процесс, обратный ее образованию. Гомолитический и гетеролитический разрывы связей, их		
	сопоставление с обменным и донорно-акцепторным механизмами их образования. Понятие свободного		

	радикала, нуклеофильной и электрофильной частицы.		
	Классификация реакций в органической химии. Понятие о типах и механизмах реакций в		
	органической химии. Субстрат и реагент. Классификация реакций по изменению в структуре субстрата		
	(присоединение, отщепление, замещение, изомеризация) и типу реагента (радикальные,		
	нуклеофильные, электрофильные).		
	Реакции присоединения (AN, AE), элиминирования (E), замещения (SR, SN, SE), изомеризации.		
	Разновидности реакций каждого типа: гидрирование и дегидрирование, галогенирование и		
	дегалогенирование, гидратация и дегидратация, гидрогалогенирование и дегидрогалогенирование,		
	полимеризация и поликонденсация, перегруппировка. Особенности окислительно-восстановительных		
	реакций в органической химии.		
	Современные представления о химическом строении органических веществ. Основные		
	направления развития теории строения А. М. Бутлерова. Изомерия органических веществ и ее виды.		
	Структурная изомерия: межклассовая, углеродного скелета, положения кратной связи и		
	функциональной группы. Пространственная изомерия: геометрическая и оптическая. Понятие		
	асимметрического центра. Биологическое значение оптической изомерии. Взаимное влияние атомов в		
	молекулах органических веществ. Электронные эффекты атомов и атомных групп в органических		
	молекулах. Индукционный эффект, положительный и отрицательный, его особенности. Мезомерный		
	эффект (эффект сопряжения), его особенности.		
	Лабораторная работа №1	2	2
	Изготовление моделей молекул — представителей различных классов органических соединений.		
	Обнаружение углерода и водорода в органическом соединении. Обнаружение галогенов (проба		
	Бейльштейна).		
	Самостоятельная работа:	4	3
	Проработка конспектов лекций, работа с учебником, решение расчетных задач.		
Тема 1.3.	Гомологический ряд алканов. Понятие об углеводородах. Особенности строения предельных	2	2
Предельные	углеводородов. Алканы как представители предельных углеводородов.		
углеводороды.	Электронное и пространственное строение молекулы метана и других алканов. Гомологический		
	ряд и изомерия парафинов. Нормальное и разветвленное строение углеродной цепи. Номенклатура		
	алканов и алкильных заместителей. Физические свойства алканов. Алканы в природе.		
	Химические свойства алканов . Реакции SR-типа: галогенирование (работы Н. Н. Семенова),		
	нитрование по Коновалову. Механизм реакции хлорирования алканов. Реакции дегидрирования,		
	горения, каталитического окисления алканов. Крекинг алканов, различные виды крекинга, применение		
	в промышленности. Пиролиз и конверсия метана, изомеризация алканов.		
	Применение и способы получения алканов. Области применения алканов. Промышленные		
	способы получения алканов: получение из природных источников, крекинг парафинов, получение		

	синтетического бензина, газификация угля, гидрирование алканов. Лабораторные способы получения		
	алканов: синтез Вюрца, декарбоксилирование, гидролиз карбида алюминия.		
	Циклоалканы. Гомологический ряд и номенклатура циклоалканов, их общая формула.		
	Понятие о напряжении цикла. Изомерия циклоалканов: межклассовая, углеродного скелета,		
	геометрическая. Получение и физические свойства циклоалканов. Химические свойства циклоалканов.		
	Специфика свойств циклоалканов с малым размером цикла. Реакции присоединения и радикального		
	замещения.		
	Лабораторная работа №2	2	2
	Получение метана и изучение его свойств: горения, отношения к бромной воде и раствору		
	перманганата калия.		
	Самостоятельная работа:	2	3
	Проработка конспектов лекций, работа с учебником, решение индивидуальных расчетных задач.		
Гема 1.4.	Гомологический ряд алкенов. Электронное и пространственное строение молекулы этилена	2	2
Этиленовые и диеновые	и алкенов. Гомологический ряд и общая формула алкенов. Изомерия этиленовых углеводородов:		
глеводороды.	межклассовая, углеродного скелета, положения кратной связи, геометрическая. Особенности		
	номенклатуры этиленовых углеводородов, названия важнейших радикалов. Физические свойства		
	алкенов.		
	Химические свойства алкенов. Электрофильный характер реакций, склонность к реакциям		
	присоединения, окисления, полимеризации. Правило Марковникова и его электронное обоснование.		
	Реакции галогенирования, гидрогалогенирования, гидратации, гидрирования. Механизм АЕ-реакций.		
	Понятие о реакциях полимеризации. Горение алкенов. Реакции окисления в мягких и жестких		
	условиях. Реакция Вагнера и ее значение для обнаружения непредельных углеводородов, получения		
	гликолей.		
	Применение и способы получения алкенов. Использование высокой реакционной		
	способности алкенов в химической промышленности. Применение этилена и пропилена.		
	Промышленные способы получения алкенов. Реакции дегидрирования и крекинга алкенов.		
	Лабораторные способы получения алкенов.		
	Алкадиены. Понятие и классификация диеновых углеводородов по взаимному расположению		
	кратных связей в молекуле. Особенности электронного и пространственного строения сопряженных		
	диенов. Понятие о -электронной системе. Номенклатура диеновых углеводородов. Особенности		
	химических свойств сопряженных диенов как следствие их электронного строения. Реакции 1,4-		
	присоединения. Полимеризация диенов. Способы получения диеновых углеводородов: работы С. В.		
	Лебедева, дегидрирование алканов.		
	Основные понятия химии высокомолекулярных соединений (на примере продуктов		
	полимеризации алкенов, алкадиенов и их галогенпроизводных). Мономер, полимер, реакция		

			ı
	полимеризации, степень полимеризации, структурное звено. Типы полимерных цепей: линейные,		
	разветвленные, сшитые. Понятие о стереорегулярных полимерах. Полимеры термопластичные и		
	термореактивные. Представление о пластмассах и эластомерах. Полиэтилен высокого и низкого		
	давления, его свойства и применение. Катализаторы Циглера — Натта. Полипропилен, его применение		
	и свойства. Галогенсодержащие полимеры: тефлон, поливинилхлорид. Каучуки натуральный и		
	синтетические. Сополимеры (бутадиенстирольный каучук). Вулканизация каучука, резина и эбонит.		
	Лабораторная работа №3	2	2
	Распознавание образцов алканов и алкенов. Получение этилена дегидратацией этилового спирта.		
	Взаимодействие этилена с бромной водой, раствором перманганата калия.		
	Самостоятельная работа:	2	3
	Проработка конспектов лекций, работа с учебником, решение индивидуальных расчетных задач.		
Тема 1.5.	Гомологический ряд алкинов. Электронное и пространственное строение ацетилена и других	1	2
Ацетиленовые	алкинов. Гомологический ряд и общая формула алкинов. Номенклатура ацетиленовых углеводородов.		
углеводороды.	Изомерия межклассовая, углеродного скелета, положения кратной связи.		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Химические свойства и применение алкинов. Особенности реакций присоединения по		
	тройной углерод-углеродной связи. Реакция Кучерова. Правило Марковникова применительно к		
	ацетиленам. Подвижность атома водорода (кислотные свойства алкинов). Окисление алкинов. Реакция		
	Зелинского. Применение ацетиленовых углеводородов. Поливинилацетат.		
	Получение алкинов. Получение ацетилена пиролизом метана и карбидным методом.		
	Лабораторная работа №4	2	2
	Получение ацетилена из карбида кальция, ознакомление с физическими и химическими свойствами		
	ацетилена: растворимостью в воде, горением, взаимодействием с бромной водой, раствором		
	перманганата калия, солями меди (I) и серебра.		
	Самостоятельная работа:	2	3
	Проработка конспектов лекций, работа с учебником, решение индивидуальных расчетных задач.		
Тема 1.6.	Гомологический ряд аренов. Бензол как представитель аренов. Развитие представлений о	1	2
Ароматические	строении бензола. Современные представления об электронном и пространственном строении бензола.	_	_
углеводороды.	Образование ароматической - системы. Гомологи бензола, их номенклатура, общая формула.		
Jiii Bedepedan	Номенклатура для дизамещенных производных бензола: орто-, мета-, пара-расположение		
	заместителей. Физические свойства аренов.		
	Химические свойства аренов. Примеры реакций электрофильного замещения:		
	галогенирования, алкилирования (катализаторы Фриделя— Крафтса), нитрования, сульфирования.		
	Реакции гидрирования и присоединения хлора к бензолу. Особенности химических свойств гомологов		
	бензола. Взаимное влияние атомов на примере гомологов аренов. Ориентация в реакциях		
	электрофильного замещения. Ориентанты I и II рода.		
	onertpopulation of summer opinentum in it population		J

	Применение и получение аренов. Природные источники ароматических углеводородов.		
	Ароматизация алканов и циклоалканов. Алкилирование бензола.		
	Лабораторная работа №5	2	2
	Разделение смеси толуол— вода с помощью делительной воронки. Растворяющая способность толуола	2	2
	(экстракция органических и неорганических веществ толуолом из водного раствора йода, красителей);		
	растворение в бензоле веществ, труднорастворимых в воде (серы, бензойной кислоты).		
	Горение толуола. Отношение толуола к бромной воде, раствору перманганата калия.		
	Самостоятельная работа:	2	3
	Проработка конспектов лекций, работа с учебником.	_	
Тема 1.7.	Нефть . Нахождение в природе, состав и физические свойства нефти. Топливно- энергетическое	1	1
Природные источники	значение нефти. Промышленная переработка нефти. Ректификация нефти, основные фракции ее		
углеводородов.	разделения, их использование. Вторичная переработка нефтепродуктов. Ректификация мазута при		
January Park	уменьшенном давлении. Крекинг нефтепродуктов. Различные виды крекинга, работы В. Г. Шухова.		
	Изомеризация алканов. Алкилирование непредельных углеводородов. Риформинг нефтепродуктов.		
	Качество автомобильного топлива. Октановое число.		
	Природный и попутный нефтяной газы. Сравнение состава природного и попутного газов,		
	их практическое использование.		
	Каменный уголь. Основные направления использования каменного угля. Коксование		
	каменного угля, важнейшие продукты этого процесса: кокс, каменноугольная смола, надсмольная вода.		
	Соединения, выделяемые из каменноугольной смолы. Продукты, получаемые из надсмольной воды.		
	Экологические аспекты добычи, переработки и использования горючих ископаемых.		
	Лабораторная работа №6	2	2
	Коллекция «Природные источники углеводородов». Образование нефтяной пленки на поверхности		
	воды. Определение наличия непредельных углеводородов в бензине и керосине.		
	Самостоятельная работа:	1	3
	Проработка конспекта лекции, подготовка докладов по теме.		
Тема 1.8.	Строение и классификация спиртов. Классификация спиртов по типу углеводородного	1	2
Гидроксильные	радикала, числу гидроксильных групп и типу атома углерода, связанного с гидроксильной группой.		
соединения.	Электронное и пространственное строение гидроксильной группы. Влияние строения спиртов на их		
	физические свойства. Межмолекулярная водородная связь. Гомологический ряд предельных		
	одноатомных спиртов. Изомерия и номенклатура алканолов, их общая формула.		
	Химические свойства алканолов. Реакционная способность предельных одноатомных		
	спиртов. Сравнение кислотно-основных свойств органических и неорганических соединений,		
	содержащих ОН-группу: кислот, оснований, амфотерных соединений (воды, спиртов). Реакции,		
	подтверждающие кислотные свойства спиртов. Реакции замещения гидроксильной группы.		

			T
	Межмолекулярная дегидратация спиртов, условия образования простых эфиров. Сложные эфиры		
	неорганических и органических кислот, реакции этерификации. Окисление и окислительное		
	дегидрирование спиртов.		
	Способы получения спиртов. Гидролиз галогеналканов. Гидратация алкенов, условия ее		
	проведения. Восстановление карбонильных соединений.		
	Отдельные представители алканолов. Метанол, его промышленное получение и применение		
	в промышленности. Биологическое действие метанола. Специфические способы получения этилового		
	спирта. Физиологическое действие этанола.		
	Многоатомные спирты. Изомерия и номенклатура представителей двух- и трехатомных		
	спиртов. Особенности химических свойств многоатомных спиртов, их качественное обнаружение.		
	Отдельные представители: этиленгликоль, глицерин, способы их получения, практическое		
	применение.		
	Фенол. Электронное и пространственное строение фенола. Взаимное влияние ароматического		
	кольца и гидроксильной группы.		
	Химические свойства фенола как функция его химического строения. Бромирование фенола		
	(качественная реакция), нитрование (пикриновая кислота, ее свойства и применение). Образование		
	окрашенных комплексов с ионом Fe3+. Применение фенола. Получение фенола в промышленности.		
	Лабораторная работа №7	2	2
	Растворимость в воде алканолов: этиленгликоля, глицерина, фенола. Распознавание водных		_
	растворов фенола и глицерина. Окисление спиртов различного строения хромовой смесью. Получение		
	этилового эфира уксусной кислоты. Получение глицерата меди. Качественные реакции на фенол.		
	Самостоятельная работа:	2	3
	Проработка конспектов лекций, работа с учебником, решение расчетных задач.	2	
Тема 1.9.	Гомологические ряды альдегидов и кетонов. Понятие о карбонильных соединениях.	1	2
Альдегиды и кетоны.	Электронное строение карбонильной группы. Изомерия и номенклатура альдегидов и кетонов.	•	_
тырдегиды и кетепы.	Физические свойства карбонильных соединений.		
	Химические свойства альдегидов и кетонов. Реакционная способность карбонильных		
	соединений. Реакции окисления альдегидов, качественные реакции на альдегидную группу. Реакции		
	поликонденсации: образование фенолоформальдегидных смол.		
	Применение и получение карбонильных соединений. Применение альдегидов и кетонов в		
	быту и промышленности. Альдегиды и кетоны в природе (эфирные масла, феромоны). Получение		
	карбонильных соединений окислением спиртов, гидратацией алкинов, окислением углеводородов.		
	Отдельные представители альдегидов и кетонов, специфические способы их получения и свойства.		
	Лабораторная работа № 8	2	2
	Получение уксусного альдегида: окисление этанола в этаналь раскаленной медной проволокой;	2	
	11011 1ettie jaejenoto ambdetriga. oktiesienne stanosia is stanasia paekaseinnon meditori npobosiokon,		1

	V 76		
	окисление этанола хромовой смесью. Качественные реакции на альдегидную группу: реакция		
	«серебряного зеркала», восстановление гидроксида меди (II). Распознавание раствора ацетона и		
	формалина.		
	Самостоятельная работа:	2	3
	Проработка конспектов лекций, подготовка к тестированию по разделу.		
Тема 1.10.	Гомологический ряд предельных одноосновных карбоновых кислот. Понятие о	2	2
Карбоновые кислоты и их	карбоновых кислотах и их классификация. Электронное и пространственное строение карбоксильной		
производные.	группы. Гомологический ряд предельных одноосновных карбоновых кислот, их номенклатура и		
	изомерия. Межмолекулярные водородные связи карбоксильных групп, их влияние на физические		
	свойства карбоновых кислот.		
	Химические свойства карбоновых кислот. Реакции, иллюстрирующие кислотные свойства и		
	их сравнение со свойствами неорганических кислот. Образование функциональных производных		
	карбоновых кислот. Реакции этерификации. Ангидриды карбоновых кислот, их получение и		
	применение.		
	Способы получения карбоновых кислот. Отдельные представители и их значение. Общие		
	способы получения: окисление алканов, алкенов, первичных спиртов, альдегидов. Важнейшие		
	представители карбоновых кислот, их биологическая роль, специфические способы получения,		
	свойства и применение муравьиной, уксусной, пальмитиновой и стеариновой; акриловой и		
	метакриловой; олеиновой линолевой и линоленовой; щавелевой; бензойной кислот.		
	Сложные эфиры. Строение и номенклатура сложных эфиров, межклассовая изомерия с		
	карбоновыми кислотами. Способы получения сложных эфиров. Обратимость реакции этерификации и		
	факторы, влияющие на смещение равновесия. Образование сложных полиэфиров.		
	Полиэтилентерефталат. Лавсан как представитель синтетических волокон. Химические свойства и		
	применение сложных эфиров.		
	Жиры. Жиры как сложные эфиры глицерина. Карбоновые кислоты, входящие в состав жиров.		
	Зависимость консистенции жиров от их состава. Химические свойства жиров: гидролиз, омыление,		
	гидрирование. Биологическая роль жиров, их использование в быту и промышленности.		
	Соли карбоновых кислот. Мыла. Способы получения солей: взаимодействие карбоновых		
	кислот с металлами, основными оксидами, основаниями, солями; щелочной гидролиз сложных эфиров.		
	Химические свойства солей карбоновых кислот: гидролиз, реакции ионного обмена. Мыла, сущность		
	моющего действия. Отношение мыла к жесткой воде. Синтетические моющие средства — СМС		
	(детергенты), их преимущества и недостатки.		
	Лабораторная работа № 9	2	2
	Взаимодействие раствора уксусной кислоты с магнием, оксидом цинка, гидроксидом железа (III),		
	раствором карбоната калия и стеарата калия. Ознакомление с образцами сложных эфиров. Получение		

	сложных эфиров. Отношение сложных эфиров к воде и органическим веществам. Получение мыла и		
	изучение его свойств: пенообразования, реакций ионного обмена, гидролиза, выделения свободных		
	жирных кислот.		
	Самостоятельная работа:	2	3
	Проработка конспектов лекций, работа с учебником, решение расчетных задач.		
Тема 1.11.	Понятие об углеводах. Классификация углеводов. Моно-, ди- и полисахариды, представители	1	2
Углеводы.	каждой группы углеводов. Биологическая роль углеводов, их значение в жизни человека и общества.		
	Моносахариды. Строение и оптическая изомерия моносахаридов. Их классификация по числу		
	атомов углерода и природе карбонильной группы. Формулы Фишера и Хеуорса для изображения		
	молекул моносахаридов. Отнесение моносахаридов к D- и L-ряду. Важнейшие представители моноз.		
	Глюкоза, строение ее молекулы и физические свойства. Таутомерия. Химические свойства глюкозы:		
	реакции по альдегидной группе («серебряного зеркала», окисление азотной кислотой, гидрирование).		
	Реакции глюкозы как многоатомного спирта: взаимодействие глюкозы с гидроксидом меди (II) при		
	комнатной температуре и нагревании. Различные типы брожения (спиртовое, молочнокислое).		
	Глюкоза в природе. Биологическая роль и применение глюкозы. Фруктоза как изомер глюкозы.		
	Сравнение строения молекулы и химических свойств глюкозы и фруктозы. Фруктоза в природе и ее		
	биологическая роль.		
	Пентозы. Рибоза и дезоксирибоза как представители альдопентоз. Строение молекул.		
	Дисахариды. Строение дисахаридов. Способ сочленения циклов. Восстанавливающие и		
	невосстанавливающие свойства дисахаридов как следствие сочленения цикла. Строение и химические		
	свойства сахарозы. Технологические основы производства сахарозы. Лактоза и мальтоза как изомеры		
	сахарозы.		
	Полисахариды. Общее строение полисахаридов. Строение молекулы крахмала, амилоза и		
	амилопектин. Физические свойства крахмала, его нахождение в природе и биологическая роль.		
	Гликоген. Химические свойства крахмала. Строение элементарного звена целлюлозы. Влияние		
	строения полимерной цепи на физические и химические свойства целлюлозы. Гидролиз целлюлозы,		
	образование сложных эфиров с неорганическими и органическими кислотами. Понятие об		
	искусственных волокнах: ацетатном шелке, вискозе. Нахождение в природе и биологическая роль		
	целлюлозы. Сравнение свойств крахмала и целлюлозы.		2
	Лабораторная работа № 10	2	2
	Реакция «серебряного зеркала» глюкозы. Взаимодействие глюкозы с гидроксидом меди (II) при		
	различных температурах.		
	Действие аммиачного раствора оксида серебра на сахарозу. Обнаружение лактозы в молоке. Действие		
	йода на крахмал. Обнаружение крахмала с помощью качественной реакции в меде, хлебе, йогурте,		
	маргарине, макаронных изделиях, крупах.		

	Самостоятельная работа:	3	3
	Проработка конспектов лекций, работа с учебником, решение расчетных задач, подготовка к		
	тестированию.		
Тема 1.12.	Классификация и изомерия аминов. Понятие об аминах. Первичные, вторичные и третичные	1	2
Амины, аминокислоты,	амины. Классификация аминов по типу углеводородного радикала и числу аминогрупп в молекуле.		
белки.	Гомологические ряды предельных алифатических и ароматических аминов, изомерия и номенклатура.		
	Химические свойства аминов. Амины как органические основания, их сравнение с аммиаком		
	и другими неорганическими основаниями. Сравнение химических свойств алифатических и		
	ароматических аминов. Образование амидов. Анилиновые красители. Понятие о синтетических		
	волокнах. Полиамиды и полиамидные синтетические волокна.		
	Применение и получение аминов. Получение аминов. Работы Н. Н. Зинина.		
	Аминокислоты. Понятие об аминокислотах, их классификация и строение. Оптическая		
	изомерия ά-аминокислот. Номенклатура аминокислот. Двойственность кислотно-основных свойств		
	аминокислот и ее причины. Биполярные ионы. Реакции конденсации. Пептидная связь. Синтетические		
	волокна: капрон, энант. Классификация волокон. Получение аминокислот, их применение и		
	биологическая функция.		
	Белки. Белки как природные полимеры. Первичная, вторичная, третичная и четвертичная		
	структуры белков. Фибриллярные и глобулярные белки. Химические свойства белков: горение,		
	денатурация, гидролиз, качественные (цветные) реакции. Биологические функции белков, их значение.		
	Белки как компонент пищи. Проблема белкового голодания и пути ее решения.		
	Лабораторная работа № 11	2	2
	Образование солей анилина. Бромирование анилина. Образование солей глицина. Получение		
	медной соли глицина. Растворение белков в воде и их коагуляция. Денатурация белка. Цветные		
	реакции белков. Обнаружение белка в курином яйце и молоке.		
	Самостоятельная работа:	3	3
	Проработка конспектов лекций, работа с учебником, решение расчетных задач.		
Тема1.13.	Нуклеиновые кислоты. Нуклеиновые кислоты как природные полимеры. Нуклеотиды, их	1	2
Азотсодержащие	строение, примеры. АТФ и АДФ, их взаимопревращение и роль этого процесса в природе. Понятие		
гетероциклические	ДНК и РНК. Строение ДНК, ее первичная и вторичная структура. Работы Ф. Крика и Д. Уотсона.		
соединения. Нуклеиновые	Комплементарность азотистых оснований. Репликация ДНК. Особенности строения РНК. Типы РНК и		
кислоты.	их биологические функции. Понятие о троичном коде (кодоне). Биосинтез белка в живой клетке.		
	Генная инженерия и биотехнология. Трансгенные формы растений и животных.		
	Лабораторная работа № 12	2	2
	Модели молекул важнейших гетероциклов. Коллекция гетероциклических соединений.		
	Действие раствора пиридина на индикатор. Взаимодействие пиридина с соляной кислотой. Модель		

	молекулы ДНК, демонстрация принципа комплементарности азотистых оснований.		
	Самостоятельная работа:	1	3
	Проработка конспектов лекций, подготовка к тестированию.	•	
Тема 1.14.	Ферменты. Понятие о ферментах как о биологических катализаторах белковой природы.	2	1
Биологически активные	Особенности строения и свойств в сравнении с неорганическими катализаторами. Классификация		
соединения.	ферментов. Особенности строения и свойств ферментов: селективность и эффективность. Зависимость		
	активности ферментов от температуры и рН среды. Значение ферментов в биологии и применение в		
	промышленности.		
	Витамины. Понятие о витаминах. Их классификация и обозначение. Норма потребления		
	витаминов. Водорастворимые (на примере витаминов С, группы В и Р) и жирорастворимые (на примере		
	витаминов А, D и Е). Авитаминозы, гипервитаминозы и гиповитаминозы, их профилактика.		
	Гормоны. Понятие о гормонах как биологически активных веществах, выполняющих		
	эндокринную регуляцию жизнедеятельности организмов. Классификация гормонов: стероиды,		
	производные аминокислот, полипептидные и белковые гормоны. Отдельные представители:		
	эстрадиол, тестостерон, инсулин, адреналин.		
	Лекарства. Понятие о лекарствах как химиотерапевтических препаратах. Краткие		
	исторические сведения о возникновении и развитии химиотерапии. Группы лекарств: сульфамиды		
	(стрептоцид), антибиотики (пенициллин), антипиретики (аспирин), анальгетики (анальгин). Механизм		
	действия некоторых лекарственных препаратов, строение молекул, прогнозирование свойств на основе		
	анализа химического строения. Антибиотики, их классификация по строению, типу и спектру действия.		
	Безопасные способы применения, лекарственные формы.		
	Лабораторная работа № 13	4	2
	Сравнение скорости разложения Н2О2 под действием фермента каталазы и неорганических		
	катализаторов: KI, FeCl3, MnO2. Образцы витаминных препаратов. Обнаружение аспирина в готовой		
	лекарственной форме. Обнаружение витамина А в подсолнечном масле. Обнаружение витамина С в		
	яблочном соке. Определение витамина D в рыбьем жире или курином желтке. Поливитамины.		
	Лабораторная работа № 14		
	Испытание растворимости адреналина в воде и соляной кислоте. Взаимодействие адреналина с		
	раствором FeCl3. Белковая природа инсулина (цветная реакция на белки). Обнаружение аспирина в		
	готовой лекарственной форме.		
	Самостоятельная работа:	4	3
	Проработка конспектов лекций, подготовка к итоговому тестированию по 1 разделу.		
	Раздел 2. Общая и неорганическая химия		
Тема 2.1.	Состав вещества. Химические элементы. Способы существования химических элементов:	2	2
Химия — наука о	атомы, простые и сложные вещества. Вещества постоянного и переменного состава. Закон постоянства		

веществах.	состава веществ. Вещества молекулярного и немолекулярного строения. Способы отображения молекул: молекулярные и структурные формулы; шаростержневые и масштабные пространственные (Стюарта-Бриглеба) модели молекул. Измерение вещества. Масса атомов и молекул. Атомная единица массы. Относительные атомная и молекулярная массы. Количество вещества и единицы его измерения: моль, ммоль, кмоль. Число Авогадро. Молярная масса. Агрегатные состояния вещества. Твердое (кристаллическое и аморфное), жидкое и газообразное агрегатные состояния вещества. Закон Авогадро и его следствия. Молярный объем веществ в газообразном состоянии. Объединенный газовый закон и уравнение Менделеева—Клапейрона.		
	Смеси веществ. Различия между смесями и химическими соединениями. Массовая и объемная		
	доли компонентов смеси. Лабораторная работа № 15	2	2
	Опыты, иллюстрирующие закон сохранения массы веществ. Очистка веществ фильтрованием и дистилляцией. Очистка веществ перекристаллизацией.	2	2
	Самостоятельная работа:	4	3
	Проработка конспектов лекций, решение расчетных задач.		
Тема 2.2. Строение атома.	Атом — сложная частица. Доказательства сложности строения атома: катодные и рентгеновские лучи, фотоэффект, радиоактивность, электролиз. Планетарная модель атома Э. Резерфорда. Строение атома по Н. Бору. Современные представления о строении атома. Корпускулярно-волновой дуализм частиц микромира. Состав атомного ядра. Нуклоны: протоны и нейтроны. Изотопы и нуклиды. Устойчивость ядер. Электронная оболочка атомов. Понятие об электронной орбитали и электронном облаке. Квантовые числа: главное, орбитальное (побочное), магнитное и спиновое. Распределение электронов по энергетическим уровням, подуровням и орбиталям в соответствии с принципом наименьшей энергии, принципом Паули и правилом Гунда. Электронные конфигурации атомов химических элементов. Валентные возможности атомов химических элементов. Электронная классификация химических элементов: s-, p-, d-, f-элементы.	1	2
	Лабораторная работа № 16 Модели орбиталей различной формы. Наблюдение спектров испускания и поглощения соединений химических элементов с помощью спектроскопа.	2	2
	Самостоятельная работа: Подготовка докладов по теме. Проработка конспектов лекций, подготовка к тестированию.	2	3
Тема 2.3.	Открытие периодического закона. Предпосылки: накопление фактологического материала, работы	2	2

			1
Периодический закон и	предшественников (И. В. Деберейнера, А. Э. Шанкуртуа, Дж. А. Ньюлендса, Л. Ю. Мейера), съезд		
Периодическая система	химиков в Карлсруэ, личностные качества Д. И. Менделеева. Открытие Д. И. Менделеевым		
химических элементов Д.	Периодического закона.		
И. Менделеева.	Периодический закон и строение атома. Изотопы. Современное понятие химического		
	элемента. Закономерность Г. Мозли. Современная формулировка Периодического закона.		
	Периодическая система и строение атома. Физический смысл порядкового номера элементов, номеров		
	группы и периода. Периодическое изменение свойств элементов: радиуса атома; энергии ионизации;		
	электроотрицательности. Причины изменения металлических и неметаллических свойств элементов в		
	группах и периодах, в том числе больших и сверхбольших. Значение Периодического закона и		
	Периодической системы химических элементов Д. И. Менделеева для развития науки и понимания		
	химической картины мира.		
	Лабораторная работа № 17	2	2
	Образцы простых веществ оксидов и гидроксидов элементов III периода. Сравнение свойств простых		
	веществ, оксидов и гидроксидов элементов III периода.		
	Самостоятельная работа:	4	3
	Проработка конспектов лекций, подготовка к тестированию.		
Тема 2.4.	Понятие о химической связи. Типы химических связей: ковалентная, ионная, металлическая и	2	2
Строение вещества.	водородная.		
	Ковалентная химическая связь. Два механизма образования этой связи: обменный и донорно-		
	акцепторный. Основные параметры этого типа связи: длина, прочность, угол связи или валентный угол.		
	Основные свойства ковалентной связи: насыщенность, поляризуемость и прочность.		
	Электроотрицательность и классификация ковалентных связей по этому признаку: полярная и		
	неполярная ковалентные связи. Полярность связи и полярность молекулы. Способ перекрывания		
	электронных орбиталей и классификация ковалентных связей по этому признаку. Кратность		
	ковалентных связей и классификация их по этому признаку: одинарные, двойные, тройные,		
	полуторные. Типы кристаллических решеток у веществ с этим типом связи: атомные и молекулярные.		
	Физические свойства веществ с этими кристаллическими решетками.		
	Ионная химическая связь. Крайний случай ковалентной полярной связи. Механизм		
	образования ионной связи. Ионные кристаллические решетки и свойства веществ с такими		
	кристаллами.		
	Металлическая химическая связь. Особый тип химической связи, существующий в металлах		
	и сплавах. Ее отличия и сходство с ковалентной и ионной связями. Свойства металлической связи.		
	Металлические кристаллические решетки и свойства веществ с такими кристаллами.		
	Водородная химическая связь. Механизм образования такой связи. Ее классификация:		
	межмолекулярная и внутримолекулярная водородные связи. Молекулярные кристаллические решетки		

	для этого типа связи. Физические свойства веществ с водородной связью. Биологическая роль водородных связей в организации структур биополимеров. Единая природа химических связей: наличие различных типов связей в одном веществе, переход одного типа связи в другой и т. п. Комплексообразование. Понятие о комплексных соединениях. Координационное число комплексообразователя. Внутренняя и внешняя сфера комплексов. Номенклатура комплексных соединений. Их значение.		
	Табораторная работа № 18 Модели из воздушных шаров пространственного расположения sp-, sp²-, sp³- гибридных орбиталей. Модели кристаллических решеток различного типа. Качественные реакции на ионы Fe²+ и Fe³+. Лабораторная работа № 19 Комплексные соединения. Качественные реакции на ионы Fe²+ и Fe³+. Комплексные соединения в реакциях обмена: взаимодействие гексацианоферрата(II)калия с сульфатом меди. Комплексные соединения в окислительно-восстановительных реакциях: восстановление серебра из его комплексного соединения.	4	2
	Самостоятельная работа: Проработка конспектов лекций, решение расчетных задач, подготовка к тестированию.	3	3
Тема 2.5. Полимеры.	Неорганические полимеры. Полимеры — простые вещества с атомной кристаллической решеткой: аллотропные видоизменения углерода (алмаз, графит, карбин, фуллерен, взаимосвязь гибридизации орбиталей у атомов углерода с пространственным строением аллотропных модификаций); селен и теллур цепочечного строения. Полимеры — сложные вещества с атомной кристаллической решеткой: кварц, кремнезем (диоксидные соединения кремния), корунд (оксид алюминия) и алюмосиликаты (полевые шпаты, слюда, каолин). Минералы и горные породы. Сера пластическая. Минеральное волокно — асбест. Значение неорганических природных полимеров в формировании одной из геологических оболочек Земли — литосферы. Органические полимеры. Способы их получения: реакции полимеризации и реакции поликонденсации. Структуры полимеров: линейные, разветвленные и пространственные. Структурирование полимеров: вулканизация каучуков, дубление белков, отверждение поликонденсационных полимеров. Классификация полимеров по различным признакам.	2	1
	Лабораторная работа № 20 Ознакомление с образцами пластмасс, волокон, каучуков, минералов и горных пород. Проверка пластмасс на электрическую проводимость, горючесть, отношение к растворам кислот,	2	2
	щелочей и окислителей. Обнаружение хлора в поливинилхлориде. Самостоятельная работа:	4	3

	Проработка конспектов лекций, решение расчетных задач.		
Тема 2.6.	Понятие о дисперсных системах. Классификация дисперсных систем в зависимости от агрегатного	1	1
Дисперсные системы.	состояния дисперсионной среды и дисперсной фазы, а также по размеру их частиц. Грубодисперсные		
_	системы: эмульсии и суспензии. Тонкодисперсные системы: коллоидные (золи и гели) и истинные		
	(молекулярные, молекулярно-ионные и ионные). Эффект Тиндаля. Коагуляция в коллоидных		
	растворах. Синерезис в гелях.		
	Значение дисперсных систем в живой и неживой природе и практической жизни человека.		
	Эмульсии и суспензии в строительстве, пищевой и медицинской промышленности, косметике.		
	Биологические, медицинские и технологические золи. Значение гелей в организации живой материи.		
	Биологические, пищевые, медицинские, косметические гели. Синерезис как фактор, определяющий		
	срок годности продукции на основе гелей. Свертывание крови как биологический синерезис, его		
	значение.		
	Лабораторная работа № 21	2	2
	Виды дисперсных систем и их характерные признаки. Получение суспензии серы и канифоли.		
	Получение эмульсии растительного масла и бензола. Получение золя крахмала. Получение золя		
	серы из тиосульфата натрия.		
	Самостоятельная работа:	2	3
	Проработка конспектов лекций, решение расчетных задач.		
Тема 2.7.	Классификация химических реакций в органической и неорганической химии. Понятие о	2	2
Химические реакции.	химической реакции. Реакции, идущие без изменения качественного состава веществ: аллотропизация		
	и изомеризация. Реакции, идущие с изменением состава веществ: по числу и характеру реагирующих		
	и образующихся веществ (разложения, соединения, замещения, обмена); по изменению степеней		
	окисления элементов (окислительно-восстановительные и неокислительно-восстановительные		
	реакции); по тепловому эффекту (экзо- и эндотермические); по фазе (гомо- и гетерогенные); по на-		
	правлению (обратимые и необратимые); по использованию катализатора (каталитические и		
	некаталитические); по механизму (радикальные, молекулярные и ионные).		
	Вероятность протекания химических реакций. Внутренняя энергия, энтальпия. Тепловой		
	эффект химических реакций. Термохимические уравнения. Стандартная энтальпия реакций и		
	образования веществ. Закон Г. И. Гесса и его следствия. Энтропия.		
	Скорость химических реакций. Понятие о скорости реакций. Скорость гомо- и гетерогенной		
	реакции. Энергия активации.		
	Факторы, влияющие на скорость химической реакции. Природа реагирующих веществ.		
	Температура (закон Вант— Гоффа). Концентрация. Катализаторы и катализ: гомо- и гетерогенный, их		
	механизмы. Ферменты, их сравнение с неорганическими катализаторами. Зависимость скорости		
	реакций от поверхности соприкосновения реагирующих веществ.		

		:	
	Обратимость химических реакций. Химическое равновесие. Понятие о химическом		
	равновесии. Равновесные концентрации. Динамичность химического равновесия. Факторы, влияющие		
	на смещение равновесия: концентрация, давление, температура (принцип Ле Шателье).		
	Лабораторная работа № 22	4	2
	Реакции, идущие с образованием осадка, газа или воды для органических и неорганических кислот.		
	Лабораторная работа № 23		
	Зависимость скорости химической реакции от концентрации реагирующих веществ и от		
	температуры. Смещение химического равновесия в зависимости от изменения равновесных		
	концентраций в системе.		
	Самостоятельная работа:	4	3
	Проработка конспектов лекций, решение расчетных задач, подготовка к тестированию.		
Тема 2.8. Растворы.	Понятие о растворах. Физико-химическая природа растворения и растворов. Взаимодействие растворителя и растворенного вещества. Растворимость веществ. Способы выражения концентрации	2	2
	растворов: массовая доля растворенного вещества (процентная), молярная.		
	Теория электролитической диссоциации. Механизм диссоциации веществ с различными		
	типами химических связей. Вклад русских ученых в развитие представлений об электролитической		
	диссоциации. Основные положения теории электролитической диссоциации. Степень		
	электролитической диссоциации и факторы ее зависимости. Сильные и средние электролиты.		
	Диссоциация воды. Водородный показатель. Среда водных растворов электролитов.		
	Реакции обмена в водных растворах электролитов.		
	Гидролиз как обменный процесс. Необратимый гидролиз органических и неорганических		
	соединений и его значение в практической деятельности человека.		
	Обратимый гидролиз солей. Ступенчатый гидролиз. Практическое применение гидролиза.		
	Гидролиз органических веществ (белков, жиров, углеводов, полинуклеотидов, АТФ) и его		
	биологическое и практическое значение. Омыление жиров. Реакция этерификации.		
	Лабораторная работа № 24	6	2
	Приготовление растворов различных видов концентрации.	O	2
	лабораторная работа № 25		
	Электролитическая диссоциация. Сравнение химической активности кислот и оснований. Лабораторная работа № 26		
	Гидролиз солей. Гидролиз карбонатов, сульфатов и силикатов щелочных металлов, нитрата цинка,		
	хлорида аммония.	4	
	Самостоятельная работа:	4	3
	Проработка конспектов лекций, работа с учебником, решение расчетных задач. Подготовка к		
	тестированию по разделу.		

Тема 2.9.	Окислительно-восстановительные реакции. Степень окисления. Восстановители и окислители.	2	2
Окислительно-	Окисление и восстановление. Важнейшие окислители и восстановители. Восстановительные свойства		
восстановительные	металлов — простых веществ. Окислительные и восстановительные свойства неметаллов — простых		
реакции.	веществ. Восстановительные свойства веществ, образованных элементами в низшей (отрицательной)		
Электрохимические	степени окисления. Окислительные свойства веществ, образованных элементами в высшей		
процессы.	(положительной) степени окисления. Окислительные и восстановительные свойства веществ,		
	образованных элементами в промежуточных степенях окисления.		
	Классификация окислительно-восстановительных реакций. Реакции межатомного и		
	межмолекулярного окисления-восстановления. Реакции внутримолекулярного окисления-		
	восстановления. Реакции самоокисления-самовосстановления (диспропорционирования).		
	Методы составления уравнений окислительно-восстановительных реакций. Метод		
	электронного баланса. Влияние среды на протекание окислительно-восстановительных процессов.		
	Химические источники тока. Электродные потенциалы. Ряд стандартных электродных		
	потенциалов (электрохимический ряд напряжений металлов). Гальванические элементы и принципы		
	их работы. Составление гальванических элементов. Образование гальванических пар при химических		
	процессах. Гальванические элементы, применяемые в жизни: свинцовая аккумуляторная батарея,		
	никель-кадмиевые батареи, топливные элементы.		
	Электролиз расплавов и водных растворов электролитов. Процессы, происходящие на		
	катоде и аноде. Уравнения электрохимических процессов. Электролиз водных растворов с инертными		
	электродами. Электролиз водных растворов с растворимыми электродами. Практическое применение		
	электролиза.		
	Лабораторная работа № 27	4	2
	Взаимодействие металлов с неметаллами, а также с растворами солей и растворами кислот.		
	Окислительные свойства перманганата калия в различных средах.		
	Лабораторная работа № 28		
	Гальванические элементы и батарейки. Электролиз раствора хлорида меди (II).		
	Самостоятельная работа:	6	3
	Проработка конспектов лекций, работа с учебником, решение расчетных задач, выполнение		
	индивидуальных заданий.		
Тема 2.10.	Классификация неорганических веществ . Простые и сложные вещества. Оксиды, их классификация.	2	2
Классификация веществ.	Гидроксиды (основания, кислородсодержащие кислоты, амфотерные гидроксиды). Кислоты, их		
Простые вещества.	классификация. Основания, их классификация. Соли средние, кислые, основные и комплексные.		
	Металлы. Положение металлов в периодической системе и особенности строения их атомов.		
	Простые вещества — металлы: строение кристаллов и металлическая химическая связь. Общие		
	физические свойства металлов и их восстановительные свойства: взаимодействие с неметаллами		

	(кислородом, галогенами, серой, азотом, водородом), водой, кислотами, растворами солей,		
	органическими веществами (спиртами, галогеналканами, фенолом, кислотами), щелочами. Оксиды и		
	гидроксиды металлов. Зависимость свойств этих соединений от степеней окисления металлов.		
	Значение металлов в природе и жизни организмов.		
	Коррозия металлов. Понятие коррозии. Химическая коррозия. Электрохимическая коррозия.		
	Способы защиты металлов от коррозии.		
	Общие способы получения металлов. Металлы в природе. Металлургия и ее виды: пиро-,		
	гидро- и электрометаллургия. Электролиз расплавов и растворов соединений металлов и его		
	практическое значение.		
	Неметаллы . Положение неметаллов в Периодической системе, особенности строения их		
	атомов. Электроотрицательность.		
	Благородные газы. Электронное строение атомов благородных газов и особенности их химических и		
	физических свойств.		
	Неметаллы — простые вещества. Их атомное и молекулярное строение их. Аллотропия.		
	Химические свойства неметаллов. Окислительные свойства: взаимодействие с металлами, водородом,		
	менее электроотрицательными неметаллами, некоторыми сложными веществами. Восстановительные		
	свойства неметаллов в реакциях с фтором, кислородом, сложными веществами — окислителями		
	(азотной и серной кислотами и др.).		
	Лабораторная работа № 29	4	2
	Коллекция «Классификация неорганических веществ» и образцы представителей классов.		
	Коллекция «Классификация органических веществ» и образцы представителей классов.		
	Взаимодействие цинка или алюминия с растворами кислот и щелочей. Окрашивание пламени		
	катионами щелочных и щелочноземельных металлов.		
	Лабораторная работа № 30		
	Коррозия металлов в зависимости от условий. Защита металлов от коррозии.		
	Самостоятельная работа:	4	3
	Проработка конспектов лекций, выполнение индивидуальных заданий.		
Тема 2.11.	Водородные соединения неметаллов. Получение аммиака и хлороводорода синтезом и	2	2
Основные классы	косвенно. Физические свойства. Отношение к воде: кислотно-основные свойства.		
неорганических и	Оксиды и ангидриды карбоновых кислот. Несолеобразующие и солеобразующие оксиды.		
органических соединений	Кислотные оксиды, их свойства. Основные оксиды, их свойства. Амфотерные оксиды, их свойства.		
	Зависимость свойств оксидов металлов от степени окисления. Ангидриды карбоновых кислот как		
	аналоги кислотных оксидов.		
	Кислоты органические и неорганические. Кислоты в свете теории электролитической		
	диссоциации. Кислоты в свете протолитической теории. Классификация органических и		

	неорганических кислот. Общие свойства кислот: взаимодействие органических и неорганических		
	кислот с металлами, основными и амфотерными оксидами и гидроксидами, солями, образование		
	сложных эфиров. Особенности свойств концентрированной серной и азотной кислот.		
	Основания органические и неорганические. Основания в свете теории электролитической		
	диссоциации. Основания в свете протолитической теории. Классификация органических и		
	неорганических оснований. Химические свойства щелочей и нерастворимых оснований. Свойства		
	бескислородных оснований: аммиака и аминов. Взаимное влияние атомов в молекуле анилина.		
	Амфотерные органические и неорганические соединения. Амфотерные основания в свете		
	протолитической теории. Амфотерность оксидов и гидроксидов переходных металлов: взаимодействие		
	с кислотами и щелочами.		
	Соли. Классификация и химические свойства солей. Особенности свойств солей органических		
	и неорганических кислот.		
	Генетическая связь между классами органических и неорганических соединений. Понятие		
	о генетической связи и генетических рядах в неорганической и органической химии. Генетические		
	ряды металла (на примере кальция и железа), неметалла (серы и кремния), переходного элемента		
	(цинка). Генетические ряды и генетическая связь в органической химии. Единство мира веществ.		
	Лабораторная работа № 31	6	2
	Оксиды. Кислотные, основные и амфотерные оксиды, их свойства. Получение и свойства углекислого		
	газа. Реакция «серебряного зеркала» для муравьиной кислоты.		
	Лабораторная работа № 32		
	Гидроксиды. Взаимодействие гидроксида натрия с солями (сульфатом меди (II) и хлоридом		
	аммония). Разложение гидроксида меди. Получение и амфотерные свойства гидроксида алюминия.		
	Лабораторная работа № 33		
	Кислоты. Соли. Свойства соляной, серной (разбавленной) и уксусной кислот. Взаимодействие		
	концентрированных азотной и серной кислот, а также разбавленной азотной кислоты с медью.		
	Самостоятельная работа:	4	3
	Проработка конспектов лекций, выполнение индивидуальных заданий.		
Тема 2.12.	s-Элементы	2	2
Химия элементов.	Водород. Двойственное положение водорода в периодической системе. Изотопы водорода.		
	Тяжелая вода. Окислительные и восстановительные свойства водорода, его получение и применение.		
	Роль водорода в живой и неживой природе.		
	Вода. Роль воды как средообразующего вещества клетки. Экологические аспекты водопользования.		
	Элементы І А-группы. Щелочные металлы. Общая характеристика щелочных металлов на		
	основании положения в Периодической системе элементов Д. И. Менделеева и строения атомов.		
	Получение, физические и химические свойства щелочных металлов. Катионы щелочных металлов как		

важнейшая химическая форма их существования, регулятивная роль катионов калия и натрия в живой клетке. Природные соединения натрия и калия, их значение.

Элементы II А-группы. Общая характеристика щелочноземельных металлов и магния на основании положения в Периодической системе элементов Д. И. Менделеева и строения атомов. Кальций, его получение, физические и химические свойства. Важнейшие соединения кальция, их значение и применение. Кальций в природе, его биологическая роль. р-Элементы

Алюминий. Характеристика алюминия на основании положения в Периодической системе элементов Д. И. Менделеева и строения атома. Получение, физические и химические свойства алюминия. Важнейшие соединения алюминия, их свойства, значение и применение. Природные соединения алюминия.

Углерод и кремний. Общая характеристика на основании их положения в Периодической системе Д. И. Менделеева и строения атома. Простые вещества, образованные этими элементами. Оксиды и гидроксиды углерода и кремния. Важнейшие соли угольной и кремниевой кислот. Силикатная промышленность.

Галогены. Общая характеристика галогенов на основании их положения в Периодической системе элементов Д. И. Менделеева и строения атомов. Галогены — простые вещества: строение молекул, химические свойства, получение и применение. Важнейшие соединения галогенов, их свойства, значение и применение. Галогены в природе. Биологическая роль галогенов.

Халькогены. Общая характеристика халькогенов на основании их положения в Периодической системе элементов Д. И. Менделеева и строения атомов. Халькогены — простые вещества. Аллотропия. Строение молекул аллотропных модификаций и их свойства. Получение и применение кислорода и серы. Халькогены в природе, их биологическая роль.

Элементы V А-группы. Общая характеристика элементов этой группы на основании их положения в Периодической системе элементов Д. И. Менделеева и строения атомов. Строение молекулы азота и аллотропных модификаций фосфора, их физические и химические свойства. Водородные соединения элементов VA-группы. Оксиды азота и фосфора, соответствующие им кислоты. Соли этих кислот. Свойства кислородных соединений азота и фосфора, их значение и применение. Азот и фосфор в природе, их биологическая роль.

Элементы IV А-группы. Общая характеристика элементов этой группы на основании их положения в Периодической системе элементов Д. И. Менделеева и строения атомов. Углерод и его аллотропия. Свойства аллотропных модификаций углерода, их значение и применение. Оксиды и гидроксиды углерода и кремния, их химические свойства. Соли угольной и кремниевых кислот, их значение и применение. Природообразующая роль углерода для живой и кремния для неживой природы.

	17		
	d-Элементы		
	Особенности строения атомов d-элементов (IB-VIIIB-групп). Медь, цинк, хром, железо,		
	марганец как простые вещества, их физические и химические свойства. Нахождение этих металлов в		
	природе, их получение и значение. Соединения d-элементов с различными степенями окисления.		
	Характер оксидов и гидроксидов этих элементов в зависимости от степени окисления металла.		
	Лабораторная работа № 34	10	2
	Химические свойства щелочных и щелочноземельных металлов.		
	Лабораторная работа № 35		
	Химические свойства соединений элементов IIIА и IVА группы.		
	Лабораторная работа № 36		
	Свойства галогенов и их сравнительная активность.		
	Лабораторная работа № 37		
	Химические свойства и качественные реакции соединений элементов VA группы.		
	Лабораторная работа № 38		
	Изучение свойств простых веществ и соединений d-элементов. Гидроксиды хрома, марганца, железа,		
	меди, цинка, их получение и химические свойства.		
	Самостоятельная работа:	8	3
	Проработка конспектов лекций, работа с учебником, решение расчетных задач, выполнение		
	индивидуальных заданий, подготовка к тестированию.		
Тема 2.13.	Химия и производство. Химическая промышленность и химические технологии. Сырье для	2	3
Химия в жизни общества.	химической промышленности. Вода в химической промышленности. Энергия для химического		
,	производства. Научные принципы химического производства. Защита окружающей среды и охрана		
	труда при химическом производстве. Основные стадии химического производства. Сравнение		
	производства аммиака и метанола.		
	Химия в сельском хозяйстве. Химизация сельского хозяйства и ее направления. Растения и		
	почва, почвенный поглощающий комплекс. Удобрения и их классификация. Химические средства		
	защиты растений. Отрицательные последствия применения пестицидов и борьба с ними. Химизация		
	животноводства.		
	Химия и экология. Химическое загрязнение окружающей среды. Охрана гидросферы от		
	химического загрязнения. Охрана почвы от химического загрязнения. Охрана атмосферы от		
	химического загрязнения. Охрана флоры и фауны от химического загрязнения. Биотехнология и генная		
	инженерия.		
	инженерия. Химия и повседневная жизнь человека . Домашняя аптека. Моющие и чистящие средства.		
	Средства борьбы с бытовыми насекомыми. Средства личной гигиены и косметики. Химия и пища.		
	* *		
	Маркировки упаковок пищевых и гигиенических продуктов и умение их читать. Экология жилища.		

Химия и генетика человека.			
Лабораторная работа № 39		2	2
Модели производства серной кислоты и аммиака. Коллекция удобрений и пестицидов.			
Образцы средств бытовой химии и лекарственных препаратов.			
Качественный элементный анализ органических соединений.			
Самостоятельная работа:		2	3
Проработка конспектов лекций, работа с литературой, выполнение индивидуальных проектов.			
Экзамен			
	Всего:	237	

Для характеристики уровня освоения учебного материала используются следующие обозначения: 1 – ознакомительный (узнавание ранее изученных объектов, свойств)

- 2 репродуктивный (выполнение деятельности по образцу, инструкции или под руководством)
- 3 продуктивный (планирование и самостоятельное выполнение деятельности, решение проблемных задач)

3. УСЛОВИЯ РЕАЛИЗАЦИИ УЧЕБНОЙ ДИСЦИПЛИНЫ

3.1. Требования к минимальному материально-техническому обеспечению

Реализация программы дисциплины требует наличия лаборатории химии.

Оборудование учебного кабинета: 11 лабораторных столов, стулья на 23 посадочных места, учебная доска, шкаф с реактивами, двухкамерный холодильник, ионометр-мультитест, весы ВЛТЭ-150с СП-100г с калибровочной гирей, весы аналитические с метрологической поверкой, баня шестиместная водяная ТБ-6, муфельная электропечь СНОЛ-1.6. 2,5. 1/103М, магнитная мешалка ПЭ-6100, камера бактерицидная «Микроцид», термостат ТС-80, аквадистиллятор ДЭ-10, центрифуга ЦЛМН-Р10-01, аспиратор малорасходный для отбора проб воздуха БРИЗ-2, спирометр ССП, штатив лабораторный ЛАБ-01 — 10 шт., штатив пластиковый для 10 пробирок — 10 шт., комплект демонстрационных таблиц - 14шт, пробирки центрифужные, шкаф сушильный, шкаф вытяжной для нагревательной печи, шкаф вытяжной ШВ-102К, столмойка двойная.

Рабочее место преподавателя: стол, стул.

3.2. Информационное обеспечение

Информационное обеспечение обучения содержит перечень рекомендуемых учебных изданий, Интернет-ресурсов, дополнительной литературы.

Основные источники

- 1. Габриелян, О. С.Химия [Текст] : учебник дляСПО М. : Изд. центр "Академия", 2011. 335 с.
- 2. Габриелян, О. С.Химия в тестах, задачах и упражнениях [Текст] : учеб. пособие для СПО. М. : Изд. центр "Академия", 2012. 222 с.
- 3. Гусева, Е. В. Химия для СПО: учебно-методическое пособие: в 2 частях. Часть 1 / Е. В. Гусева, М. Р. Зиганшина, Д. И. Куликова. Казань: КНИТУ, 2019. 168 с. ISBN 978-5-7882-2792-4. Текст: электронный. URL: https://znanium.com/catalog/product/1899344.
- Егоров, А. С. Химия для колледжей: учебное пособие / А. С. Егоров. Ростов-на-Дону: Феникс, 2013. 559 с. (Среднее профессиональное образование). ISBN 978-5-222-19683-0. Текст: электронный. URL: https://znanium.com/catalog/product/908852.

Дополнительные источники

- 1. Ерохин, Ю.М. Химия: учебник для СПО. М.: Академия, 2002,2003,2005. 378 с.
- 2. Пустовалова Л. М.Общая химия : учебник для СПО. Ростов н/Д : Феникс, 2006. 478 с.
- 3. Пустовалова Л. М.Органическая химия : учеб. пособие для СПО. Ростов н/Д : Феникс, 2005. 318 с.
- 4. Шайкенова, О.В. Химия. Аналитическая химия и физико-химические методы анализа [Текст]: учебно -метод. пособие для спец. "Технология продукции общественного питания" / О. В. Шайкенова. Тольятти: ВУиТ, 2018. 218 с. 20 экз.
- 5. Аналитическая химия : учебник дляСПО/ под ред. А.А. Ищенко. М. : Академия, 2006. 317 с.
- 6. Габриелян, О. С. Химия. 10 класс (базовый уровень): учебник / О. С. Габриелян. 10-е изд., стер. Москва: Издательство "Просвещение", 2022. 192 с. ISBN 978-5-09-101657-4. Текст: электронный. URL: https://znanium.com/catalog/product/2090098
- 7. Калашникова, Л. В. Химия: учебное пособие / Л. В. Калашникова; под ред. проф. Л. П. Прокофьевой. 2-е изд., стер. Москва: ФЛИНТА, 2017. 107 с. (Введение в специальность.) ISBN 978-5-9765-2700-3. Текст: электронный. URL: https://znanium.com/catalog/product/1088952 (дата обращения: 19.10.2023). Режим доступа:

по подписке.

- 8. Аналитическая химия [Электронный ресурс] : уч.для СПО /под ред. А,А,Ищенко.-М.:Академия,2012.-320 с. // Nashel.com
- 9. Липатнивов В.Е. Физическая и коллоидная химия [Электронный ресурс]: уч.для техн.сов.торговли-М.:Высш.шкж,1995.-200 с. // Nashel.com
- 10. Белик В.В. Физическая и коллоидная химия[Электронный ресурс]: уч. Для СПО.-М.:Академия,2015.-288 с.// Nashel.com

Интернет-ресурсы

- 1. <u>www.pvg.mk.ru</u> (олимпиада «Покори Воробьевы горы»).
- 2. www.hemi.wallst.ru (Образовательный сайт для школьников «Химия»).
- 3. www.chem.msu.su (Электронная библиотека по химии)
- 4. www.enauki.ru (интернет-издание для учителей «Естественные науки»).
- 5. <u>www.1september.ru</u> (методическая газета «Первое сентября»).
- 6. www.hvsh.ru (журнал «Химия в школе»).
- 7. <u>www.hij.ru</u> (журнал «Химия и жизнь»).
- 8. www.chemistry-chemists.com (электронный журнал «Химики и химия»).

4. КОНТРОЛЬ И ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Контроль и оценка результатов освоения учебной дисциплины осуществляется преподавателем в процессе проведения тестирования, а также в результате выполнения обучающимися индивидуальных заданий.

Результаты обучения раскрываются через усвоенные знания и приобретенные умения, направленные на приобретение общих компетенций.

Результаты обучения (предметные) на уровне учебных действий	Формы и методы контроля и оценки результатов обучения
1. Сформированность представлений о месте химии в современной научной картине мира; понимание роли химии в формировании кругозора и функциональной грамотности человека для решения практических задач.	Устный опрос Индивидуальный проект с использованием информационных технологий
2. Владение основополагающими химическими понятиями, теориями, законами и закономерностями; уверенное пользование химической терминологией и символикой.	Устный опрос, письменное задание, тестирование.
3. Владение основными методами научного познания, используемыми в химии: наблюдением, описанием, измерением, экспериментом; умение обрабатывать, объяснять результаты проведенных опытов и делать выводы; готовность и способность применять методы познания при решении практических задач.	Устный опрос, выполнение химического эксперимента, отчет по лабораторной работе.
4. Сформированность умения давать количественные оценки и производить расчеты по химическим формулам и уравнениям.	Устный опрос, тестирование. Индивидуальная расчетная работа.
5. Владение правилами техники безопасности при использовании химических веществ.	Устный опрос, тестирование, выполнение химического эксперимента
6. Сформированность собственной позиции по отношению к химической информации, получаемой из разных источников.	Устный опрос, письменное задание, тестирование.